
N9 1- 20 699

ADVANCED CLIPS CAPABILITIES

Mr. Gary Riley
Mr. Brian L. Donnell

Software Technology Branch
NASA Johnson Space Center

Mail Stop PT4
Houston, TX 77058

ABSTRACT CLIPS OBJECT-ORIENTED LANGUAGE

The 'C' Language Integrated Production System
(CLIPS) is a forward chaining rule based language de-
veloped by NASA at the Johnson Space Center.
CLIPS was designed specifically to provide high
portability, low cost, and easy integration with exter-
nal systems. The current release of CLIPS, version 4.3,
is being used by over 2,500 users throughout the pub-
lic and private community. The primary addition to
the next release of CLIPS, version 5.0, will be the
CLIPS Object-Oriented Language (COOL). The major
capabilities of COOL are: class definitions with mul-
tiple inheritance and no restrictions on the number,
types, or cardinality of slots; message passing which
allows procedural code bundled with an object to be
executed; and query functions which allow groups of
instances to be examined and manipulated. In addi-
tion to COOL, numerous other enhancements have

been added to CLIPS including: generic functions
(which allow different pieces of procedural code to be
executed depending upon the types or classes of the
arguments), integer and double precision data type
support, multiple conflict resolution strategies, global
variables, logical dependencies, type checking on
facts, full ANSI compiler support, and incremental
reset for rules.

INTRODUCTION

The 'C' Language Integrated Production System
(CLIPS) is a forward chaining rule-based production
system developed by the Software Technology
Branch at NASA/Johnson Space Center [1,2,3].

Version 4.3 of CLIPS has capabilities similar to those

of OPS5 (Official Production System) and is syntacti-
cally similar to ART (Automated Reasoning Tool)
[4,5,6]. Version 5.0 of CLIPS introduces several en-
hancements to version 4.3 which will be discussed in
this paper.

The primary addition to version 5.0 of CLIPS is the
CLIPS Object-Oriented Language (COOL). COOL is a
hybrid system incorporating various ideas from other
Object-Oriented Programming (OOP) systems such as
Smalltalk and the Common Lisp Object System
(CLOS) [7,8,9,10]. Since other constructs within CLIPS

(defrule, deffacts, etc.) were not originally developed
in an object-oriented manner, no attempt was made
to rewrite CLIPS to develop a completely
object-oriented system. Thus, OOP features that have
been added to CLIPS are extensions rather than fun-

damental changes to the entirety of CLIPS. For ex-
ample, no attempt is made to let all CLIPS constructs
be treated as objects, such as rules being instances of
the rule class [10]. Instead, an imaginary dividing
line was drawn with the class construct; once in-

stances of a user-defined class are created, they may
only be handled in an object-oriented manner, i.e.
via messages. However, other elements of CLIPS,
such as rules and facts, are still manipulated in the

same (non-OOP) manner as they were in previous
versions.

The primary features of COOL are: classes with mul-
tiple inheritance, instances, message-passing con-
structs [10], and a query system for determining
and/or iterating an action over a set of instances
which satisfy user-defined criteria. The
message-passing constructs consist of around, before,
primary, and after message-handlers as well as
slot-accessor message-handlers and slot-daemons.

Objects

An object in CLIPS is defined to be one of the
following: an integer or floating-point number, a
symbol, a string, a multifield value, or an instance of
a user-defined class. Objects may be used anywhere
within CLIPS: expressions, facts, rule patterns, and so
on. Objects are manipulated by sending them mes-

464



sages. Instances of a user-defined class can only be
manipulated with messages, but other objects can be
handled in a non-OOP manner as well. For example,
two integers can still be added by calling the '+' func-
tion directly; sending a message to one of the integers
with the other as an argument (as one would in
Smalltalk) is unnecessary [9].

Instances are created with a special function called
make-instance, which allocates the memory for an
instance and then sends it the init message. All op-

erations on objects which are instances of
user-defined classes are done with messages. The

message-passing concept used by COOL is similar to
that of Smalltalk [9].

Cl_

the course of executing a message. The declarative
flow of execution for COOL message-handlers is simi-
lar to the standard method combination type in CLOS
[7,8]. COOL also provides imperative control by al-
lowing handlers to explicitly call other handlers that
they are shadowing.

Slot-daemons

For every slot in an instance, two implicit primary
message-handlers are defined: one for reading the
slot and one for the writing the slot. Users must use
these messages to access explicitly the object's slots.
Slot-daemons may easily be defined by defining
around, before, or after message-handlers which
correspond to these messages.

A class is a special construct in CLIPS, similar to
rules. CLIPS does not support metaclasses (classes of
classes) [7,8,9,10], since classes are not objects. Classes
must be manipulated with special functions like
other CLIPS constructs. For example, to print a rule,
the function pprule is used, and, similarly, ppclass is
used to print a class.

Classes in COOL are defined much in the same way

as they are in CLOS. Full multiple inheritance is
supported using the rules found in CLOS [7,8].
Classes can have any number of slots, and slots can
have a list of facets selected from a predefined set.
Some of the slot facets available are: single and

multi-valued cardinality, static and dynamic default
values, shared and local storage (similar to class and

instance variables respectively in Smalltalk), and
access restrictions.

Messages

Messages are implemented by pieces of procedural
code written in CLIPS called message-handlers.
These handlers are bundled with the class defini-

tions, and thus inheritance relationships may be used
to determine to which messages an instance can re-
spond. The implementation of a message can be fur-
ther subdivided into handler types: around, before,
primary, and after. This notion is borrowed from
generic function methods in CLOS [7,8]. Around

handlers are meant to set up an environment within
which the other handlers may execute. Before and
after handlers perform auxiliary work outside the
scope of the primary handler. The primary handler
is intended to do the core of the work of the message.
Within the body of a message-handler is the only
place where the slots of an object can be directly ac-
cessed without using messages. However, an object
may send other messages (including ones to itself) in

Instance-Set Queries and Distributed Actions

At present, only facts can be pattern-matched on the
left-hand side of rules; pattern-matching against the
state of an instance of a user-defined class is not pos-
sible. However, COOL does provide a useful
query-system for determining and performing ac-
tions on sets of instances that meet certain
user-defined criteria. This query-system can be used
with control facts to accomplish a brute-force instance

pattern-match. (Control facts and slot-daemons may
also be used to this end.)

An instance-set is an ordered collection of instances.
Each member of this set is an instance of a set of

classes defined by the user. The set of classes can be
different for each instance in the instance-set. For ex-

ample, one instance-set definition might be the
ordered pairs of men or boys and women or girls. If
there is one instance of each of these four classes,

then there would be four instance-sets which satisfy
the definition: (Man-l,Woman-1), (Man-l,girl-1),

(boy-l,Woman-1), and (boy-l,girl-1).

A query is a user-defined boolean expression applied
to an instance-set to determine if the instance-set

meets further user-defined restrictions. Continuing
the example above, one query might be that the two
instances in an ordered pair have the same age.

A distributed action is a user-defined expression
evaluated for each instance-set which satisfies a

query. Continuing the example above, one dis-
tributed action might be to simply print out the

ordered pair to the screen.

Several different functions are provided in this

system: determine if there are any instance-sets
which satisfy the query, group and return all

465



instance-sets which satisfy the query, perform an ac-
tion for all instance-sets which satisfy the query, and
others.

GENERIC FUNCTIONS

In addition to the object system itself, CLIPS 5.0 also
supports generic functions [7,8,10]. Generic functions
are groups of procedural code written in CLIPS that
can later be called like any other CLIPS function.

Different methods can be defined for generic func-
tions that do different things depending on what the
classes of the generic function arguments are. This
allows new generic functions as well as standard

CLIPS system functions to be overloaded. Although
generic functions are not part of COOL (and can be
used independently of it), they will utilize the full
inheritance information of the classes of their

arguments.

Generic functions in COOL are quite similar to
generic functions in CLOS [7,8]. One difference is that
COOL supports only primary methods, whereas
CLOS has around, before, and after methods. This

notion of splitting tasks into around, before, primary,
and after parts was moved to messages and taken
away from generic functions in COOL because it was

felt intuitively that, for a particular set of arguments,
a generic function should only execute one piece of
code. However, it seemed reasonable that the im-

plementation of a message might in fact be
comprised of many different pieces of code.

CLIPS system functions which are not overloaded by
generic functions completely bypass the generic dis-
patch mechanism. Thus, previous CLIPS programs
will not pay any performance penalties simply as a
result of the generic dispatch being available.

The argument restrictions which are used to deter-
mine the applicability of a method to a particular

generic function call are somewhat more powerful
than what is found in CLOS [7,8]. The user can spec-
ify that a restriction be any one of a list of classes,
whereas CLOS only lets the user specify one class.
Also, in COOL, the user may also specify an arbitrary
boolean expression that the argument must satisfy
for the method to be applicable. This is more power-
ful than CLOS individual methods, for they only al-
low the user to restrict the specific object rather than
allowing any boolean expression. As a result of these
enhancements, the precedence determination be-

tween methods in COOL is slightly more complicated
than it is in CLOS.

To define new non-overloaded functions in CLIPS,

the deffunction construct can be used in place of
generic functions. Deffunctions allow a piece of pro-
cedural code to be written and used in the CLIPS lan-

guage without any coding in an external language
such as C. In previous versions of CLI_, to add a
new function, the user had to write it in C (or an-

other language such as FORTRAN or Ada) and
compile it, then relink CLIPS with the new function.

GLOBAL VARIABLES

The defglobal construct allows global variables to be
defined which may then be accessed or set by rules,
generic functions, and other constructs. Global vari-
ables allow information to be stored outside of facts

(thus avoiding potentially unwanted pattern match-
ing). For example, a global variable could be used to
count the number of facts of a particular type.
Incrementing the global variable from a counting
rule would not reactivate the counting rule, whereas
incrementing a value from a fact storing the count
would retrigger the rule since the count fact would
have to be matched against in the antecedent of the
rule.

INTEGER DATA TYPE SUPPORT

CLIPS now supports an integer data type (represented
internally as a C long integer). Floating-point num-
bers are now represented internally as C double preci-
sion numbers for greater accuracy. Previously, CLIPS
stored all numbers as single precision floating-point
numbers. Arithmetic functions such as addition,

subtraction, multiplication, and division support
mixed mode operations on integers and floats.

CONFLICT RESOLUTION STRATEGIES

Past versions of CLIPS supported a single conflict res-
olution strategy [4,11]. The order of rules to be exe-
cuted on the agenda (the list of rules that have their
conditions satisfied) was determined by the salience
of the rule (a numerical value between -10,000 and
10,000) and the order of activation of the rule. Rules

with higher salience are executed before rules with
lower salience. Among rules of equal salience, the
rule last activated is executed first (a "depth-first" or
"stack" strategy).

CLIPS 5.0 now supports seven different conflict reso-

lution strategies: depth, breadth, LEX, MEA, simplic-
ity, complexity, and random. These resolution
strategies are used to determine placement of an acti-
vation of a rule on the agenda between rules of equal
salience. The depth strategy implements the "stack"
placement (last-activated, first-executed) of activa-
tions found in previous versions of CLIPS. The

breadth strategy implements a "queue" placement

466



(first-activated, first-executed) of activations. The
LEX and MEA strategies are similar to the OPS5
strategies of the same name [4,5]. The simplicity
strategy executes activations of rules with simple an-
tecedents before rules with complex antecedents. The
complexity strategy works in a directly opposite
manner to simplicity strategy. The complexity of the
antecedent of a rule is determined by manner factors

including the number of patterns, the number of
constant comparisons, and the number of variable
comparisons. The random strategy randomly deter-
mines the order of activations of equal salience. The
conflict resolution strategy can be dynamically
changed and the agenda will be updated to reflect the

new strategy.

SALIENCE EXTENSIONS

The salience declaration within a rule is no longer
limited to strictly integer constants. The declared
salience for a rule can be an expression which refer-
ences global variables as well as calling system and/or
user defined functions. In addition, evaluation of
salience values can now occur at several different
times: when a rule is defined, when an activation is

placed on the agenda, and every cycle of execution.
The user also has the ability to refresh the salience
values of activations on the agenda at any time.

DEFTEMPLATE FIELD CHECKING

The deftemplate construct introduce in version 4.3 of
CLIPS provided a method for structuring facts by tag-
ging each field of the fact with a name. This pro-
vided CLIPS with a record structure similar to proce-
dural programming languages. Optional fields in the
deftemplate construct allowed type, value, and range
restrictions to be specified. However, only the CLIPS
Cross Reference, Style and Verification (CRSV) util-
ity tool was able to make use of this information.
CLIPS 5.0 now supports type, range, and value check-
ing for deftemplates both statically (when patterns or
actions using deftemplates are loaded) and
dynamically (when deftemplate facts are asserted).

LOGICAL DEPENDENCIES

Truth maintenance [4,12] is now supported in CLIPS
through the use of logical dependencies. The
"logical" pattern operator can be placed around the
first N patterns of a rule to indicate that facts asserted
by this rule are dependent upon the existence of the
facts matching the logical patterns (or non-existence
of facts matching negated logical patterns). A fact
asserted from a rule with logical patterns is logically
supported by that rule. A fact may have multiple log-

ical support from the same or different rules. A fact
asserted from a source other than a rule with logical
patterns is unconditionally supported (and cannot be
retracted as a result of truth maintenance).

Whenever a fact is retracted that matched a logical
pattern of a rule (or a fact is asserted that matched a
negated logical pattern), the logical support from that
rule for any fact asserted by that rule is removed.

Any fact that loses all of its logical support is
automatically retracted.

INCREMENTAL RESET

In previous versions of CLIPS, newly defined rules
were not activated on currently existing facts. That is,
rules were only activated based on facts that were
added after the rule was defined. Thus it was not

possible to load new rules into the system and have
these rules activated on previously asserted facts
without somehow reasserting those facts. Newly de-
fined rules in CLIPS 5.0, however, are fully activated

by currently existing facts. This makes it possible to
dynamically load new rules and have them automat-
ically updated based on the current set of facts.

The build function allows construct to be dynami-

cally created during execution. This makes it possible
for a rule to create new rules (which would be incre-

mentally reset based on the currently existing facts).
It is also possible to safely delete rules as one of the
actions of the consequent of a rule. It is even allowed
to delete the currently executing rule and have the
actions of its consequent execute to completion.

ANSI COMPILER SUPPORT

In addition to the numerous features added to CLIPS

5.0, the source code has been modified to be ANSI C

conformant wherever discrepancies occurred be-
tween "K&R C standards" and ANSI C standards.

Function prototypes have also been used for all func-
tions to increase the maintainability of the code.
ANSI C features not compatible with K&R C compil-
ers can be removed through the use of compiler

directive flags.

CONCLUSION

Version 5.0 of CLIPS provides several new capabili-
ties which significantly increase the usefulness of the

tool. Among these capabilities are: object-oriented
programming, generic functions, global variables, in-
teger data type support, additional conflict resolution
strategies, salience extensions, type, range and value
checking for deftemplates, incremental reset, and
logical dependencies.

467



REFERENCES

1.

2.

3.

4.

5.

6.

7.

.

.

10.

11.

12.

Culbert, C., CLIPS Reference Manual. NASA
document JSC-22948, July 1989.

Riley, G., CLIPS Architecture Manual. NASA
document JSC-23047, May 1989.

Giarratano, J., CLIPS User's Guide. NASA

document, August 1989.

Brownston, L., Farrell, R., Kant, E. and Martin,

N., Programming Expert Systems in OPS5: An
Introduction to Rule-Based Programming,
Addison-Wesley, 1985.

Forgy, C., OPS5 User's Manual. Department of
Computer Science document CMU-CS-81-135,
Carnegie-Mellon University, Pittsburgh, PA.
1981.

ART Reference Manual, Inference Corporation,
Los Angeles, CA. 1986.

Keene, S., Object-Oriented Programming in
Common Lisp. Symbolics, Inc., 1989

Bobrow, D., DeMichiel, L., Gabriel, R., Keene, S.,
Kiczales, G. and Moon, D., Common Lisp Object
System Specification. X3J13 document 88-002R,
June 1988.

Pinson, L. and Wiener, R., An Introduction to

Object-Oriented Programming and Smalltalk.
Addison-Wesley, 1988.

Tello, E., Object-Oriented Programming for
Artificial Intelligence. Addision-Wesley, 1989.

Cohen, P. and Feigenbaum, E. (ed.), The
Handbook of Artificial Intelligence, Vol. I,
William Kaufmann, Inc., 1982.

Cohen, P. and Feigenbaum, E. (ed.), The
Handbook of Artificial Intelligence, Vol. II,
William Kaufmann, Inc., 1982.

468


